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Data fusion is the process of combining information from
heterogeneous sources into a single composite picture of the relevant
process, such that the composite picture is generally more accurate
and complete than that derived from any single source alone (Hall,
2004).
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@ N Motivation: remote sensing data

What is the benefit of data fusion?

» Remote sensing data are often incomplete, sparse, and spatially
and temporally heterogeneous. Our goal is to infer the true
physical process from all available data sources.

» Data fusion capitalizes on complementary strengths of the
individual datasets to minimize prediction errors.

» Correlation in space and time can be exploited for improved
accuracy.



Motivating example

Estimating lower atmosphere CO2

» The lower atmosphere (below 500 hPa )is where CO, enters and
exits the atmosphere. This may be a proxy for ‘sources’ and
‘sinks’.

> No satellite instrument currently provides measurements of CO»
globally near the Earth’s surface.

» The Greenhouse gases Observing SATellite (GOSAT) provides
total-column CO», while the Atmospheric InfraRed Sounder
(AIRS) provides mid-tropospheric CO».

» Approximations to lower-atmospheric CO, may be made by
deriving joint predictions of total-column CO, and
mid-tropospheric CO;, and taking a (weighted) difference.



eyl _ _
e, Example illustration

Figure: Example of different footprints ( Source: Amy Braverman)
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Difficulties encountered when fusing remote sensing datasets:
> Massive size,
» Change of support,
> Isotropy and stationarity,
» Accounting for instruments’ biases.
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Prelude: spatial (non-temporal) interpolation for massive datasets
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A special case of Spatio-Temporal Data Fusion is non-temporal
spatial interpolation. It is convenient to introduce the ideas of STDF
by talking about the spatial-only case first.



We assume the data from an instrument is generated according to
the following model:

Data model

Z = (Z(B1),Z(B),..-,Z(Bn));
28) = 5hg PRI

where

» D is a discretized domain made up of Basic Areal Units (BAU),
Bjj is the jth footprint from dataset i(i = 1,2),

v

v

Z; is the vector of response variable from dataset /,

v

Y(-) is the true process,

v

€i(Bjj) is the error process.
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We assume that the spatial process has the following linear mixed
model (Cressie and Johannesson, 2008),

Y(s) =t(s)'a+ S(s)'n + £(s),

where
» £(-) is a fine-scale variation process (white noise) w/ variance ag,
» t(s)'« accounts for a linear trend,
» 7 is an r-dimensional Gaussian random vector var(n),

» S(s) is an r-dimensional spatial basis expansion of s.
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Given the linear mixed model, the covariance model is,
Y = var(Z)=SKS+ agE + 02V,

where
» K = var(n): fixed dimension r X r,
> S =(S(By),...,S(Bw)),
» E and V are known matrices.

12
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The optimal (linear unbiased) predictor of Y(s) can be written as
Y(s) =a'zZ,

where a is an N-dimensional vector of kriging coefficients.
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We wish to minimize,

E(Y(s) — V() = var(Y(s) — a’ Z),
= var(Y(s)) — 2a’ cov(Z, Y(s)) + a’ var(Z) a,

with respect to a, subject to the unbiasedness constraint,
0=a'T—t(s).

Solving using the method of Lagrange multipliers, the optimal kriging
coefficients a is,

a'=(cd+@@6s) - T)(TEIT)IT) =L

14
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@ ey Prediction and standard error equations

We can interpolate at a new location with the following,
YR = a'Z,
O (E(Y(S)SSDF _ Y(s))2>
(S(s)'KS(s) + of — 2a’ (S'KS(s) + b(s))
+al (SKS + 02E+V)a)?,

N[

where

b(s) = cov(§,&(s)).

This is called Fixed Rank Kriging.

15
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» Inversion of X is computationally scalable using the
Sherman-Morrison-Woodbury formula (Hendersen and Searle,
1981),

¥ = ul-uls (K 1+suls) TTsut

where U = agE + V.
> No assumption of isotropy or stationarity.
» Handles change of support.

» Able to handle known systematic instrument biases.

16
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Spatio-Temporal Data Fusion

17
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We develop an extension of FRK called Spatio-Temporal Data
Fusion, which has the following properties,

» Ability to derive joint-estimates of two or more processes,

» Ability to exploit both spatial and temporal dependence in the
data.

Main ideas behind STDF

» We account for temporal dependence using a first-oder
auto-regressive model for m.

» We do optimal predictions using a variant of the Kalman
smoother.

18
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We assume the data from an instrument is generated according to
the following model:

z9(A) = ‘D;A‘ { 3 Yt(k)(s)} +9a),

seDNA

where
» ACRY k=1,2,t=1,2,.... T,
> Yt(k)(-) is the true process,

> egk)(A) is the error process.

19



National Aeronautics and

Space Administration

e by Process model
California Institute of Technology

Pasadena, California

We assume that the k-th process has the following form,
k k k k k k
Yi(s) =x{s)al? + 8Ps) i + () seD.

where xgk)(-), a(tk), S(tk)(-), ngk), and 5§k)(-) are defined in an
analogous fashion to the corresponding spatial-only terms.

20



National Aeronautics and
Space Administration -
Jet Propulsion Laboratory
Instrument bias
California Institute of Technology
Pasadena, California

To allow for bias, we assume that the measurement-error process
may have non-zero mean,

» The multiplicative bias coefficients {c(k) : k = 1,2} are assumed
known.
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Data stacking

At time t, we can stack datasets Z(tl) and Z(t2) to form a joint vector,
20\ _ (X0 0 Y(af ), (P 0 \(a
2 o x J\ap )0 s ) (P

(1) (1)
t €t

+< (2) )+<6<2) )
t t

Zt = Xtat + Stnt + ét + €.

or equivalently,
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We assume that the covariance parameter 77, evolves according to a
first-order auto regressive model,

nt‘nt—la <y ~ Nr (tht—la Ut) ;b= 1a2a HE)

where
» The initial state is ng ~ N, (0, Kp),

» The matrices H; and U; are called the propagator matrix and
the innovation matrix.

23
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Given data from two different instruments Z;, ..., Z1, we wish to
optimally estimate the true processes at a set of locations P C D at
timete{1,..., T}

Assuming that the parameters c, Ko, {(agk))2}, {(aék))2}, H:, and
U; are known, we can optimally estimate the posterior expectations
and covariances for {n,} and {£€F'} using a variant of Kalman
smoothing.

24



Kalman smoothing

Let Zy 3 = (Z,...,Z}), we define,

> Ny = E(0Zy.7),

> Eﬁz = E(Eﬂzlzf)v

> Py = var(n.|Zy.5),

> Rﬁz = var(£¢ |Zy4),

> Wp; = cov(n,, €1 Z13).

25
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We first initialize 1g;g = 0 and Pgp = Ko. The one-step ahead
forecasts are,

Neje—1 = Heme_yer
Pt|t—1 = HtPt—1|t—1H/t|t'

26
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Kalman smoothing

The filtering quantities for t =1,..., T are:

M|t
P

Et\t

Pt\t

Neje—1 + Pee—1S; [StPye—1S; + Di) - (Z: — QXrar — Semyye_1)
CPZEf? [S:Pye 1S, + D¢ " (Ze — QXeex — Semyye_s)

Pije—1 — Peje_1S) [SiPy_1S, + Di] 'SPy

CPEF — CPZEP? [S.Py,1S, + D] (EF?)(CP?Y,

—Pt):-1S; [StPy-1S; + D¢ ~H(EP?) (cP?Y,

where var(¢F) = CPEF, cov(¢F ¢,) = CP“EP?, and Q is a diagonal matrix
with with {c(®)} along the diagonal.

27
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We obtain the smoothing quantities by updating “backwards” in
time (i.e., fort=T—-1,T —2,...,0):

Nyr = 7’t|t+Jt(7’t+1|T_77t+1|t)

ﬁT = Eﬁt+Bt(7lt+1|T — Mes1)e)
Pir = Pyt Ie(Peyyr — Pepape)Jd:
RﬁT = Rﬁt +Be(Peyy7 — Pry1e) By,

Wﬁ-,— = Wﬁt+Jt(Pt+1|T_ Pii11c)B:

where
J: = Pt|th+1Pt+1|t
B: = —CfZEItDZ [StPt|t—1S/t + Dt] 's tPeje- 1H; +1Pt+1|t'

28
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Having obtained the joint smoothing distribution of {n,} and {¢F}
given Zq, ..., ZT, the posterior mean of Yf at the set of locations P

at time t is,
(1P
o = (V)
t
Yt|T

= Xfat + ant|T + EﬁT-

29



Prediction standard error matrix

-]

The mean squared prediction error matrix (equivalently the posterior
covariance matrix) can be calculated as:

E ([Yf —YﬁT] [Yf —YQTD

M(].:,:_l)P M(].:,?)P
Mf:zil:-l)P ME|212)P
t

= S{P.rS! +R{ +25/ W],

(km)P _ (P (K)P] [\(mP  (m)P]
where M :E([Yt - Y] [rim? - v D

P
Mt\T

t|T

30
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STDF has attractive features that make it suitable for large remote
sensing datasets,

» It is fast and scalable to large data inputs,
> It exploits the inter-process correlation for improved accuracy,

> It takes advantage of both temporal and spatial dependence in
the data.

31



National Aeronautics and
Space Administration A
Jet Propulsion Laboratory O u t I Ine
Calfomia Insitute of Technology
Pasadena, California

Application to Lower Atmosphere CO2
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Lower-atmosphere CO2

» Deriving global distribution of lower-atmosphere CO2 over time
is important for studying ‘sources’ and ‘sinks.’

» The Greenhouse gases Observing SATellite (GOSAT) provides
total-column CO», while the Atmospheric InfraRed Sounder
(AIRS) provides mid-tropospheric COs.

» We will derive joint predictions of total-column CO, and
mid-tropospheric CO2 and taking a (weighted) difference to
obtain lower atmosphere CO2.

33



Application outline

» We select GOSAT and AIRS data over the continental United
States between June and August of 2009.

» We make joint-prediction of total-column CO2 and
mid-tropospheric CO2, and use weighted differencing to derive
predictions of lower atmosphere CO2.

» Predictions of lower atmosphere CO2 will be compared to
coincident aircraft data from NOAA.

» We also compare the performance of STDF with an alternative
interpolation methodology (locally weighted regression).

34
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Observing tracks and

Example of satellite orbits and sensitivity

AIRS footprint grid

-

~ 1500 km

~ 2200 km

A

-

AIRS footprint

35

atmospheric sensitivity

E.

B

>

.:5 5 AIRS

< Acos

nr) 02 04 06 08 1
Instrument sensitivity
~ 700 km

@@—\ GOSAT footprint

~ 10 km diameter,
~ 150 km apart

~ 90 km diameter

Figure: Example of GOSAT and AIRS sensitivity
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» Within our domain, we have 3,869 ACOS data points and
40,564 AIRS data points.

» We group the data over these three months into 3-day blocks.

» For the elements of the vector of basis functions, we use local
bisquare functions.

» The covariate function t(-) are defined using a constant 1,
latitude, and longitude.

» Given the joint prediction, (\A/t|T,Acos(s), \A/t|T’A,R5(s))’, we
estimate lower atmosphere CO2 as a simple linear combination

~ 7 ~ AN
Yi7,0a(8) = th|T,ACOS(5) + th|T,AIR5(5)-

36
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Example of input data

ACOS CO2, 04-Jun-2010 to 06-Jun-2010 ACOS CO2, 09-Aug-2010 to 11-Aug-2010

365 370 375 380 385 390 395 400 365 370 375 380 385 390 395 400

37
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STDF lower-atmospheric CO2, 04-Jun-2010 to 06-Jun-2010 STDF lower-atmospheric CO2, 09-Aug-2010 to 11-Aug-2010
0 - 7 n 1400 U“ W, 75 400

. R Wi weow >
45 ) 395 395

390 390

385 30 385
380 380
375 @ 375
Standard Standard
error error
[ e ) T T
s 15 2 2o (PPM) "6 18 2 22 (PPM)

Figure: STDF output

» Run time for entire 3-month period: 4 minutes on a 3.06 GHz
machine with an Intel Duo Core processor.
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» The National Oceanic and Atmospheric Administration (NOAA)
has been sampling lower-atmospheric CO, through a series of

aircraft flights over Beaver Crossing, Nebraska and Lamont,
Oklahoma.

» We can compare the NOAA aircraft data at these two locations
against the corresponding 95% confidence intervals for STDF
lower-atmospheric CO».

39
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Beaver Crossing, Nebraska Lamont, Oklahoma
420 420
415 12000 415 12000
:;: 10000 :;: ‘ 10000
400 8000 400 . 8000
gagsﬁwl }[; }[ J[ g395Jﬁ[H H }[l ) + }[

2390 1[ 1[ : 1[ : }[ so00 3901 }[ ' %: }[ }[ H 5000
o g s i
o ow o =
36?un Jul Aug . Sep 36?un Jul Aug Sep

Time Time

Figure: STDF outputs (red intervals) vs NOAA data (colored circles).
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» To compare against loess, we randomly 6 time blocks, and
designate a small, fixed area as a reserve region.

> All data falling within the reserve region within those 6 time
blocks are withheld as test data.

> We apply STDF and loess predict the value of ACOS and AIRS
CO2 at the test locations.

Map of USA

Latitude

Longitude
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ACOS residuals: Loess AIRS residuals: Loess
©
2
&
©
z v sD=1.79 3 SD=2.83
2 2
L o fro
©
° o
[ S m—] 1 1
4 2 0 2 4 5 0 5
Residuals Residuals
ACOS residuals: STDF AIRS residuals: STDF
<
SD=163 {
« ] SD=262
{ 1
g g
] g ©
g " g
[ c 2
- [
° o
[ B ——] — 1 1
4 2 0 2 4 5 0 5
Residuals Residuals
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Conclusion

43
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» STDEF is fast: feasible for large remote sensing datasets.

» Results look reasonable by comparison to aircraft data for this
example.

» Applicable to other types of remote sensing data, e.g., aerosols,
clouds, soil moisture...

» Extensions: Bayesian inference, application to remote sensing
radiances, etc.

» Questions and/or comments: contact Hai Nguyen at
hai.nguyen@jpl.nasa.gov.
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EM estimation

Let 612 be the parameter vector at the b-th EM iteration. The
conditional expectations and covariance matrices for the “missing

data” are defined as:

(6]
7’t|T

(]
Et|T

(]
Pt|T

5]
Rt|T

(5]
Wt|T

(6]
Pt,t—1|T

Egii(1¢|Z1:7)
Eew(§:1Z1:7)
var g (1¢|Z1.7)
var gl (§¢]Z1:7)
(Me:&elZ1:7)
(

COV el (M5 Ne—1lZ1.7).

COV gib]
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The cross-covariance term, P, .17 = cov(n,, Ny_1|Z1.7), is given

by,
=1
Prr_yr = (b —Prr_1S7 [STPr7_1ST + D7) S7)
XHTPr_y71
P1.*,15—1|T = Pt\tJ;r_l + Jt(Pt+1,t\T - Ht+1Pt|t)J,t_17

where 1, is the r x r identity matrix, and define,

[b+1] _ plbl (6] (6]
Li = Pt,t—1|T + M 117
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The EM updates for 1211 are:

o = Qv axy) XAV [z sl — €]

t|T t|T
b+1 b b] _[b)
K = P([)\]T_FWEJ\]TTIEJI]T
Wy2 bty L —1 [glel | glb] (o)
(o¢) o= N(1>trace<(Ef [RfTJrgf'TEf'T])[LN(U])
t
M2 bty _ L —1 [glbl | glb] (18]
(%t)[ |- Nﬁz)trace<(Et [RtT+€t|T€t|T:|)[N(1)+1,N]>

T T-1 -t
R+ _ (Z L[b+1]) (Z K[b+1])
- t t
t=1 t=0
T T
ylb+l — (Z K Hisl O L£b+1]/> T
t=1 t=1
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Convergence of the parameter estimates may be monitored through
the negative log-likelihood

T T
1 1
—log L(0) = 5> log [Tp.(0) + 5> _BiTp(0)' B,
t=1 t=1
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Weighted differencing

We make the following simplifying assumptions,

» The air pressure at the surface of the Earth is 1000 hectopascals
(hPa) and the air pressure at the satellite instrument is 0 hPa.

» The middle troposphere is the portion of the atmosphere
between 500 hPa and 300 hPa.

» The CO, concentration above 300 hPa can be ignored.

51}
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Given total column CO3, Yacos(s), and mid-tropospheric COo,
Yairs(s), at a location s, we approximated lower-atmospheric CO5,
YLa(s), as a simple linear combination,

(1000 — 300) YACOS(S) — (500 — 300) YA|R5(S)
1000 — 500

Yia(s) =

7 2
= =Y — =Y .
5 'acos(s) 5 AIRs ()

52)



Weighted differencing

n
a
@ Pasad

From the weighted difference above, it is straightforward to obtain
the prediction standard error at location s,

oia(s) = ( 7/5,—2/5 )My r(s) ( 7/5,-2/5 ),

where My 7(s) is the prediction-error matrix for the CO» prediction
vector Yt|T(s) = (Yt|T,ACOS(S)a Yt|T,AIR5(5))/-

53



